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Abstract

The di�erential equations governing free, in-plane vibrations of linearly elastic non-circular arches with non-
uniform cross-section are derived and solved numerically to obtain frequencies and mode shapes. Numerical results
are presented for the quadratic, parabolic, catenary and elliptic arches with hinged±hinged, hinged±clamped, and
clamped±clamped end constraints. Three general taper types for a rectangular section are considered. Experimental

measurements of frequencies and their corresponding mode shapes agree closely with those predicted by
theory. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of the free vibration of arches has been the subject of much work due to their many

practical applications. The governing equations and the signi®cant historical literature on the in-plane

vibrations of elastic arches are reported in the following references and their citations: Den Hartog

(1928), Veletsos et al. (1972), Irie et al. (1983), Laura et al. (1988), Gupta and Howson (1994), Kang et

al. (1995) and Yildirim (1997). These authors calculated the natural frequencies of circular arches for

various boundary conditions. For non-circular arches with uniform cross-section, Volterra and Morell

(1960), Romanelli and Laura (1972), Wang and Moore (1973), Wang (1975), Lee and Wilson (1989),
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Maurizi et al. (1993) and Wilson and Lee (1995) analyzed the free vibration of arches with various
geometries.

For non-circular arches with variable cross-section, Wang (1972) computed only the fundamental
extensional frequency of a clamped parabolic arch with variable width and depth by using the Rayleigh±
Ritz method; and Gutierrez et al. (1989) calculated only the lowest frequencies in ¯exure and extension
by using polynomial approximations and the Ritz method. Recently, Kawakami et al. (1995) have
investigated in-plane and out-of-plane free vibrations of curved members with variable sections. In their
paper, the free vibration frequencies have been obtained by using the discrete Green function and the
numerical integral method.

The main purpose of this paper is to present both the fundamental and some higher free vibration
frequencies for linearly elastic non-circular arches with non-uniform cross-section. The di�erential
equations are derived and solved numerically for the parabolic, catenary and elliptic geometries with
hinged±hinged, hinged±clamped, and clamped±clamped end constraints. Although the e�ects of shear
deformation are neglected, the e�ects of rotatory inertia and in-plane axial deformations are included.
Numerical results are presented for quadratic arched members of variable cross-section. Three general
taper types for rectangular cross section are selected. The lowest four natural frequencies are presented
as functions of three non-dimensional system parameters: the arch rise to span length ratio, the
slenderness ratio, and the section ratio. In addition, experiments are described in which the free
vibration frequencies and mode shapes of three quadratic parabolic arches were measured; and these
results agree quite well with the present numerical studies.

2. Mathematical model

The geometry of the non-circular arch with non-uniform cross-section, symmetric about the crown, is
depicted in Fig. 1(a). Its span length, rise, subtended angle, and shape of the middle surface are l, h, a,
and y�x�, respectively. Its radius of curvature r, a function of the co-ordinate x, has an inclination f
with the x-axis. The left support is at f � fL and the right support is at f � fR: Shown in Fig. 1(a) are
the positive directions of radial and tangential displacements, w and v, and positive direction of the

Fig. 1. (a) Arch geometry; (b) loads on an arch element.
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rotation angle c of the cross-section at point f: The area moments of inertia of cross-section at f, at
the crown of arch and at the left/right end are denoted as I, Ic and Ie, respectively. The cross-sectional
areas at f and at the crown of arch are depicted as A and Ac, respectively. The angle between the arch
axis and the horizontal at the left end support is ye, which is equal to half the subtended angle, or a=2:

The quantities A and I are expressed in the form

A � AcF, �1a�

I � IcG, �1b�
where both F and G are functions of the single variable f, as discussed in Section 3.

A small element of the arch shown in Fig. 1(b) de®nes the positive directions for its loads: the axial
forces N; the shear forces Q; the bending moments M; the radial inertia force Pr; the tangential inertia
force Pt; and rotatory inertia couple T. With the inertia forces and inertia couple treated as equivalent
static quantities, the three equations for ``dynamic equilibrium'' of the element are

dN

df
�Q� rPt � 0, �2�

dQ

df
ÿN� rPr � 0, �3�

rÿ1
dM

df
ÿQÿ T � 0: �4�

The bending moment and the rotation angle of the cross-section, given by Henrych (1981), are

M � ÿEIrÿ2
ÿ
w 00 � w� rÿ1r 0v

�
� ÿEIcGrÿ2

ÿ
w 00 � w� rÿ1r 0v

�
, �5�

c � rÿ1�w 0 ÿ v�, �6�
where � 0 � � d=df, E is the Young's modulus.

The axial force, given by Borg and Gennaro (1959), is

N � EArÿ1�v 0 � w� ÿ rÿ1M � EAcFrÿ1�v 0 � w� ÿ rÿ1M: �7�
When Eq. (5) is substituted into Eq. (7), the result is

N � EAcFrÿ1�v 0 � w� � EIcGrÿ3
ÿ
w 00 � w� rÿ1r 0v

�
: �8�

The arch is assumed to be in harmonic motion, or each co-ordinate is proportional to sin�ot�, where o
is the angular frequency and t is time. The inertia loadings are then

Pr � gAo2w � gAcFo2w, �9�

Pt � gAo2v � gAcFo2v, �10�

T � gIo2c � gIcGo2rÿ1�w 0 ÿ v�, �11�
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where g is mass density of arch material and gA � gAcF is mass per unit arc length at any point on the
arch.

When Eqs. (5) and (11) are substituted into Eq. (4), then

Q � rÿ1
dM

df
ÿ RT

� ÿEIcrÿ3
�ÿ
G0 ÿ 2Grÿ1r0

�ÿ
w0� w� rÿ1r0v

�
� G

ÿ
w00 � w0 � rÿ1r0vÿ rÿ2r02v� rÿ1r0v0

��
ÿ Rgo2IcGrÿ1�w0 ÿ v�, �12�

where the index R � 1 if the rotatory inertia couple T is included, and R � 0 if T is excluded.
To facilitate the numerical studies, the following non-dimensional system variables are de®ned. The

arch rise to span length ratio f, the slenderness ratio s and the section ratio n are, respectively,

f � h

l
, �13a�

s � l�����������
Ic=Ac

p , �13b�

n � Ie

Ic

: �13c�

The co-ordinates, the displacements and the radius of curvature are normalized by the span length l:

x � x

l
, �14a�

Z � y

l
, �14b�

d � w

l
, �14c�

l � v

l
, �14d�

z � r
l
: �14e�

The last is the frequency parameter,

Ci � oisl

�����
g
E

r
, �15�

which is written in terms of the ith frequency o � oi, i � 1, 2, 3, 4, . . . :
When Eqs. (8), (10) and (12) are substituted into Eq. (2) and the non-dimensional forms of Eqs.

(13a)±(13c), (14a)±(14e), (15) are used, the result is
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l 00 � sÿ2a1d 00 �
ÿ
a2 � RC 2

i s
ÿ4a3

�
d 0 �

ÿ
a4 � sÿ2a1

�
d� a4l

0 �
h
C 2

i s
ÿ2ÿa5 � Rsÿ2a6

�
� sÿ2a7

i
l: �16�

When Eqs. (8), (9) and (12) are substituted into Eq. (3) and the non-dimensional forms of Eqs. (13a)±
(13c), (14a)±(14e), (15) are used, the result is

d 0000 � a8d
000 �

ÿ
a9 � RC 2

i s
ÿ2a5

�
d 00 �

ÿ
RC 2

i s
ÿ2a10 � a8

�
d 0 �

ÿ
a11 � s2a12 � C 2

i a13
�
d� a14l

00

�
ÿ
a15 � RC 2

i s
ÿ2a16 � s2a12

�
l 0 �

ÿ
a17 � RC 2

i s
ÿ2a18

�
l: �17�

The coe�cients in the last two equations are

a1 � F ÿ1Gzÿ3z 0, �18a�

a2 � ÿ1, �18b�

a3 � F ÿ1G, �18c�

a4 � zÿ1z 0 ÿ F ÿ1F 0, �18d�

a5 � ÿz2, �18e�

a6 � ÿF ÿ1G, �18f�

a7 � F ÿ1Gzÿ4z 0 2, �18g�

a8 � ÿ2G ÿ1G 0 � 5zÿ1z 0, �18h�

a9 � ÿ2ÿ G ÿ1G 00 � 5G ÿ1G 0zÿ1z 0 ÿ 8zÿ2z 0 2 � 2zÿ1z 00, �18i�

a10 � zz 0 ÿ G ÿ1G 0z2, �18j�

a11 � ÿ1ÿ G ÿ1G 00 � 5G ÿ1G 0zÿ1z 0 ÿ 8zÿ2z 0 2 � 2zÿ1z 00, �18k�

a12 � ÿFG ÿ1z2, �18l�

a13 � FG ÿ1z4, �18m�

a14 � ÿzÿ1z 0, �18n�

a15 � ÿ2G ÿ1G 0zÿ1z 0 � 7zÿ2z 0 2 ÿ 2zÿ1z 00, �18o�
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a16 � z2, �18p�

a17 � ÿG ÿ1G 00zÿ1z 0 � 7G ÿ1G 0zÿ2z 0 2 ÿ 15zÿ3z 03 ÿ 2G ÿ1G 0zÿ1z 00 � 10zÿ2z 0z 00 ÿ zÿ1z 000 ÿ zÿ1z 0, �18q�

a18 � G ÿ1G 0z2 ÿ zz 0: �18r�
The boundary conditions for hinged ends are

l � 0, �19a�

d � 0, �19b�

d 00 � 0, �19c�
where the condition of Eq. (19c) assures that the moment M given by Eq. (5) is zero.

The boundary conditions for clamped ends are

l � 0, �20a�

d � 0, �20b�

d 0 � 0, �20c�
where the condition of Eq. (20c) assures that the end rotation c given by Eq. (6) is zero.

3. Shape functions: F and G

The shape functions F and G contained in the governing di�erential Eqs. (16) and (17) are now
de®ned. Of the two basic classes of arched members, prime and quadratic (Leontovich, 1969), the
quadratic arch, considered more economical in bridge construction, is adopted here. Examples are also
limited to rectangular cross-sections.

First, the function G is derived for the quadratic arch. A quadratic arch is de®ned as an arch whose
moment of inertia of cross-section varies in accordance with the quadratic equation (Leontovich, 1969):

I � Ic

cos y

"
1ÿ

�
1ÿ Ic

Iecos ye

��
sin y
sin ye

�2
# : �21�

From Fig. 1(a), one obtains

y � p=2ÿ f, �22a�

ye � a=2: �22b�
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When Eqs. (22a) and (22b) are substituted into Eq. (21), the result is

I � Ic

sin f
ÿ
1� Bcos 2f

� , �23a�

where

B � 1

sin2�a=2�

�
1

ncos�a=2� ÿ 1

�
: �23b�

When Eqs. (1b) and (23a) are combined, the function G can be expressed in terms of the variable f: The
result is

G � 1

sin f
ÿ
1� Bcos2f

� : �24a�

When Eq. (24a) is di�erentiated once and twice, the results are

G 0 � G 2cos f
ÿ
2Bÿ 3Bcos 2fÿ 1

�
, �24b�

G 00 � 2G 0 2G ÿ1 � G 2sin f
ÿ
9Bcos2fÿ 2B� 1

�
: �24c�

Second, the function F is de®ned for the three taper types of rectangular cross section. The functions F
and F ' for rectangular cross-section are expressed in the form

F � G e, �25a�

F 0 � eG eÿ1G 0: �25b�
In Eqs. (25a) and (25b) the value of e is e � 1 for breadth taper, e � 1=3 for depth taper, and e � 1=2
for square taper (Gupta, 1985).

4. Geometric functions: ff, zz, zz', zz0 and zz0 '

The geometric functions f, z, z 0, z 00 and z 000, contained in the governing di�erential Eqs. (16) and (17)
are computed as follows. The non-dimensional form for the given arch shape y � y�x� is

Z � Z�x�: �26�
By de®nition

f � p
2
ÿ tanÿ1

�
dZ
dx

�
, �27�

1

z
� d2Z

dx2

"
1�

�
dZ
dx

�2
#ÿ3=2

: �28�

Both f and z are computed from derivatives of Eq. (26) and are expressed as functions of the single
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variable x: Then z 0, z 00 and z 000 are calculated from the derivatives of Eqs. (27) and (28) by using

z 0 �
�

dz
dx

��
dx
df

�
, �29a�

z 00 �
�

dz 0

dx

��
dx
df

�
, �29b�

z 000 �
�

dz 00

dx

��
dx
df

�
: �29c�

The general equation for the parabolic arch of span length l and rise h is

y � ÿ
�
4h

l 2

�
x�xÿ l�, 0RxRl: �30�

With Eqs. (13a), (14a) and (14b), the non-dimensional form of Eq. (30) becomes

Z � ÿ4fx�xÿ 1�, 0RxR1: �31�
With Eq. (31), the following geometric functions are calculated from Eqs. (27), (28), (29a)±(29c):

f � p
2
ÿ tanÿ1

�ÿ 4f�2xÿ 1��, �32a�

z �
�
1

8

�
f ÿ1

�
1� 16f 2�2xÿ 1�2

�3=2
, �32b�

Fig. 2. Arch shapes: (a) catenary; (b) elliptic.
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z 0 �
�
3

2

�
�2xÿ 1�

�
1� 16f 2�2xÿ 1�2

�3=2
, �32c�

z 00 �
�
3

8

�
f ÿ1

�
1� 64f 2�2xÿ 1�2

��
1� 16f 2�2xÿ 1�2

�3=2
, �32d�

z 000 � 12�2xÿ 1�
�
11

8
� 40f 2�2xÿ 1�2

��
1� 16f 2�2xÿ 1�2

�3=2
: �32e�

Consider the catenary arch shown in Fig. 2(a). This arch has span length l, rise h, radius of curvature at
the crown of arch r0, and a co-ordinate system �x, y� originating from the left support. The non-
dimensional equation for this arch is

Z � ÿz0cosh

�
2xÿ 1

2z0

�
� f� z0, 0RxR1, �33�

where z0 is radius of curvature at the crown of the arch normalized by the span length l.
Substituting x � 1 and Z � 0 into Eq. (33) leads to

f

z0
ÿ cosh

�
1

2z0

�
� 1 � 0: �34�

For a given f, the corresponding z0 value can be obtained by Eq. (34) by using the bisection method, the
method used herein.

Consider now an elliptic arch shown in Fig. 2(b). This arch has span length l, rise h, and a co-
ordinate system (x, y ) originating from the left support. The corresponding ellipse curve, also shown in
Fig. 2(b), is composed of this arch segment and the broken line segments extending from each end. This
ellipse curve of semi-major axis L=2 and semi-minor axis H is expressed in terms of the (X, Y ) co-
ordinate system as

Table 1

Comparison of frequency parameter Ci between this study and ®nite element method (SAP90)

Frequency parameter, Ci % Errora

Geometry of arch i This study (R = 1) SAP90

Parabolic, hinged±hinged, breadth-taper, f � 0:1, s � 50, n � 2 1 36.21 36.03 0.50

2 37.16 37.33 0.46

3 82.61 83.63 1.23

4 144.6 148.5 2.70

Catenary, hinged±clamped, depth-taper, f � 0:2, s � 100, n � 3 1 43.00 42.71 0.67

2 88.80 89.38 0.65

3 129.9 130.1 0.15

4 162.3 163.8 0.92

Elliptic �b � 0:5�; clamped±clamped, square-taper, f � 0:3, s � 50, n � 4 1 43.63 44.40 1.76

2 77.16 78.16 1.30

3 95.06 96.37 1.38

4 145.6 149.5 2.68

a Error = jthis study-SAP90j/(this study).
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�X� L=2�2
�L=2�2 � Y 2

H 2
� 1: �35a�

The relationships between the two co-ordinate systems of Fig. 2(b) are

X � bl� x, �35b�

Y � Hÿ h� y: �35c�

Table 2

E�ect of rotatory inertia on frequency parameter Ci

Frequency parameter, Ci

Geometry of arch S R i � 1 i � 2 i � 3 i � 4

Parabolic, hinged±hinged, breadth-taper, f � 0:1, n � 2 10 0 11.70 32.47 39.76 63.56

1 11.06 (5.79)a 29.99 (8.27) 36.18 (9.90) 60.65 (4.80)

20 0 17.16 36.27 71.18 83.47

1 16.90 (1.54) 34.68 (4.58) 70.85 (0.47) 75.84 (10.1)

30 0 23.58 36.42 83.74 106.2

1 23.43 (0.64) 35.68 (2.07) 80.01 (4.66) 106.0 (0.19)

50 0 36.49 37.24 84.03 148.9

1 36.21 (0.77) 37.16 (0.22) 82.61 (1.72) 144.6 (2.97)

100 0 36.51 70.15 87.15 149.3

1 36.44 (0.19) 70.08 (0.10) 86.82 (0.38) 148.2 (0.74)

200 0 36.52 81.77 148.1 149.3

1 36.50 (0.05) 81.69 (0.10) 148.1 (0.00) 149.0 (0.20)

Catenary, hinged±clamped, depth-taper, f � 0:2, n � 3 10 0 18.23 29.55 47.62 58.85

1 17.10 (6.61) 29.04 (1.76) 39.99(19.1) 57.64 (2.10)

20 0 27.37 42.34 67.01 94.08

1 26.88 (1.82) 40.83 (3.70) 65.74 (1.93) 85.53 (10.0)

30 0 36.94 44.73 94.45 98.84

1 36.51 (1.18) 44.02 (1.61) 90.51 (4.35) 97.66 (1.21)

50 0 42.52 61.50 97.52 154.3

1 42.19 (0.78) 61.31 (0.31) 95.77 (1.83) 151.9 (1.58)

100 0 43.09 89.13 130.1 163.6

1 43.00 (0.21) 88.80 (0.37) 129.9 (0.15) 162.3 (0.80)

200 0 43.18 91.81 163.0 233.8

1 43.16 (0.05) 91.71 (0.11) 162.7 (0.18) 233.4 (0.17)

Elliptic �b � 0:5�, clamped±clamped, square-taper, f � 0:3, n � 4 10 0 23.49 27.82 50.26 54.69

1 22.36 (5.05) 27.25 (2.09) 43.18 (16.4) 53.29 (2.63)

20 0 36.03 41.13 68.29 89.64

1 35.56 (1.32) 40.06 (2.67) 66.72 (2.35) 83.36 (7.53)

30 0 43.16 50.19 92.34 97.47

1 42.51 (1.53) 49.87 (0.64) 88.79 (4.00) 96.71 (0.79)

50 0 43.90 77.54 96.25 148.5

1 43.63 (0.62) 77.16 (0.49) 95.06 (1.25) 145.6 (1.99)

100 0 44.16 90.13 153.1 161.8

1 44.09 (0.16) 89.80 (0.37) 152.0 (0.72) 161.7 (0.06)

200 0 44.22 90.74 153.3 226.7

1 44.21 (0.02) 90.65 (0.10) 153.0 (0.20) 226.1 (0.27)

a Values in parentheses represent % di�erence.
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When Eqs. (35b) and (35c) are combined with Eqs. (35a), (13a), (14a) and (14b), the general equation
for the elliptic arch in non-dimensional form can be expressed in terms of the parameters f and b where
�2b� 1�l is the length of the major axis of the ellipse as shown in Fig. 2(b). The result is

Z � c2
c1

"
c21 ÿ

�
2xÿ 1

2

�2
#1=2

�fÿ c2, 0RxR1, �36a�

where

c1 � 1� 2b
2

, �36b�

c2 � f

1ÿ 2
ÿ
b� b2

�1=2
1� 2b

: �36c�

In the last two curves, f, z, z', z 00 and z 000 are calculated in a straightforward manner from Eqs. (33) and
(36a)±(36c), respectively, with use of Eqs. (27), (28), (29a)±(29c).

5. Numerical methods and computed results

Based on the above analysis, a general FORTRAN computer program was written to calculate the
frequency parameters Ci �i � 1, 2, 3, 4� and the corresponding mode shapes d � di�x� and l � li�x�: The
numerical methods described by Veletsos et al. (1972), and Lee and Wilson (1989) were used to solve the
di�erential Eqs. (16) and (17), subject to the end constraints selected from Eqs. (19a)±(19c) and (20a)±
(20c). The hinged±hinged, hinged±clamped and clamped±clamped end constraints were considered for

Table 3

Comparison of computed and measured results (parabolic, breadth-taper, f � 0:25, s � 200, n � 1:5, R � 1)

Theory Experiment

End constraint i Ci fi (Hz) fi (Hz) % Deviationa

Hinged±hinged 1 26.71 311.4 297 ÿ4.6
2 64.99 757.8 684 ÿ9.7
3 117.6 1371.0 1100 ÿ19.8
4 183.7 2142.0 2049 ÿ4.3

Hinged±clamped 1 33.71 393.1 364 ÿ7.4
2 75.83 884.2 777 ÿ12.1
3 132.5 1545.0 1215 ÿ21.4
4 201.5 2350.0 2121 ÿ9.7

Clamped±clamped 1 42.41 494.5 460 ÿ7.0
2 87.51 1020.0 916 ÿ10.2
3 148.6 1733.0 1555 ÿ10.3
4 219.3 2557.0 2290 ÿ10.4

a Deviation = (Experiment ÿ Theory)/Theory.
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each of the three arch geometries, for the three general taper types, for given parameters f, s, n, R (=0
or 1) and b: (Recall that b is needed for elliptic geometry only.)

First, the Determinant Search method was used to calculate the frequency parameters Ci, and then
the Runge±Kutta method was used to calculate the mode shapes. In this study, the four lowest values of
Ci and the corresponding mode shapes were calculated. The numerical results, given in Tables 1±3 and
Figs. 3±9, are summarized as follows.

In Table 1, values of Ci are presented for parabolic, catenary and elliptic arches. Comparisons are
made between Ci computed using the present analysis with R � 1 and Ci computed with the packaged
®nite element program SAP90. For the latter calculations, 100 three-dimensional ®nite beam elements

Fig. 3. E�ect of f on frequency: (a) hinged±hinged; (b) hinged±clamped; (c) clamped±clamped. Depth-taper;s � 200; n � 2:
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were used and e�ects of shear area were not included. Comparing the results for like arch parameters,
the results for Ci agree to within 2%. The remainder of the numerical results are based on the present
analysis.

Table 2 shows the e�ect of rotatory inertia on the four lowest frequency parameters of three arch
geometries. The inclusion of rotatory inertia is to always depress the natural frequencies. This e�ect
becomes more signi®cant as the slenderness ratio decreases.

The results shown in Figs. 3±5, for parabolic, catenary and elliptic arches with R � 1, depict the
variation of Ci �i � 1, 2, 3, 4� with f, s and n, respectively. The results of these studies may be
summarized as follows: (1) The arch geometry has little e�ect on the frequency parameters. (2) In Figs.

Fig. 4. E�ect of s on frequency: (a) hinged±hinged; (b) hinged±clamped; (c) clamped±clamped. Key as Fig. 3; f � 0:2; n � 2:
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3(a), (c) and 4(a), (c), the cross-over points represent two coincident natural frequencies, one
corresponding to the symmetric mode and the other to the antisymmetric mode. (3) As the end
constraint increases on all three arch geometries, from hinged±hinged to hinged±clamped to clamped±

clamped, each value of Ci increases, other parameters remaining constant. (4) Fig. 3 exhibits the
common feature that as each arch becomes ¯at ( f approaches zero) the frequency parameters approach
those of the straight beam with matched end conditions. (5) As the slenderness ratio s increases to 300,

the Ci values approach horizontal asymptotes. When the frequency curves are horizontal, the vibration
modes may be almost purely ¯exural as in a straight beam. (6) As the section ratio n increases (by
increasing Ie), the Ci values always increase.

Fig. 5. E�ect of n on frequency: (a) hinged±hinged; (b) hinged±clamped; (c) clamped±clamped. Key as Fig. 3; f � 0:2; s � 200:
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The results shown in Figs. 6±8, for breadth, depth and square tapered parabolic arches with R � 1,
depict the variation of Ci �i � 1, 2, 3, 4� with f, with s, and with n, respectively. In these Figures, the Ci

values generally increase as the type of taper changes from the breadth to the square to the depth taper.
Shown in Fig. 9 are the computed frequency parameter Ci �i � 1, 2, 3, 4� and their corresponding

mode shapes for the parabolic arches with hinged±hinged, hinged±clamped and clamped±clamped end
constraints for which e � 1 (breadth taper), f � 0:25, s � 200, n � 1:5 and R � 1: These arch parameters
are those chosen for the experimental arches discussed in the next section. The mode shapes for the
hinged±hinged and clamped±clamped cases showed the alternating pattern between antisymmetric and
symmetric mode shapes as i increased from 1 to 4. However, the mode shapes for the hinged±clamped
case were asymmetric mode shapes, which is to be expected since the end constraints are di�erent.

Fig. 6. E�ect of f on frequency for parabolic arches: (a) hinged±hinged; (b) hinged±clamped; (c) clamped±clamped. s � 200; n � 2:
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6. Experimental results

Experiments were designed to measure the lowest few free vibration frequencies and mode shapes on
three aluminum, laboratory-scale parabolic, tapered arches: a hinged±hinged, a hinged±clamped and a
clamped±clamped con®guration. These arches had the same geometry: quadratic arches described by Eq.
(21), with breadth taper. The dimensions, de®ned in Fig. 1, were: l � 34:64 cm, h � 8:66 cm. The depth
of the rectangular cross-section of 0.6 cm is constant, and the width of cross-section at the crown of the
arch and at the left/right ends are 2.0 and 3.0 cm, respectively. The corresponding non-dimensional
parameters were thus f � 0:25, s � 200 and n � 1:5: Based on the methods described above, in which

Fig. 7. E�ect of s on frequency for parabolic arches: (a) hinged±hinged; (b) hinged±clamped; (c) clamped±clamped. Key as Fig. 6;

f � 0:2; n � 2:
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rotatory inertia was included �R � 1�, the frequency parameters Ci were calculated. The corresponding
frequencies oi (rad/s) were computed from Eq. (15) based on the following material properties for the
aluminum arches: a Young's modulus E of 6.89 � 1010 N/m2 and a mass density g of 2680 kg/m3. The
resulting frequencies fi � oi=�2p� Hz, i = 1, 2, 3, 4 are given in Table 3 for each of the three arches
tested.

The experimental setup and methods of measuring the free vibration frequencies of these three arches
is fully described by Lee and Wilson (1989). For the sake of completeness, these methods are now
summarized. At each end, the arch was either hinged or clamped to an 80 kgf, isolated granite block
where each block ``¯oated'' on a rubber pad. Including the end points, 15 reference points evenly spaced

Fig. 8. E�ect of n on frequency for parabolic arches: (a) hinged±hinged; (b) hinged±clamped; (c) clamped±clamped. Key as Fig. 6;

f � 0:2; s � 200:
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along the top of each arch were used. To one of these reference points, on the underside of the arch was
a�xed a miniature accelerometer mounted so that it was sensitive only to radial arch acceleration. In a
typical experiment, a hammer also ®tted with a miniature accelerometer was struck at each of the
reference points, in-plane and in the radial direction of the arch. All acceleration data were received by a
Signal Analyzer (Model SD390, Scienti®c-Atlanta Corp.), and processed through a minicomputer using
a fast Fourier transform (FFT) analyzer. For the details of data reduction, see Ewins (1985).

Fig. 9. Examples of mode shape for parabolic arches: (a) hinged±hinged; (b) hinged±clamped; (c) clamped±clamped. Breadth taper;

f � 0:25; s � 200; n � 1:5:
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The data analysis lead to two important results: (1) the frequency dependent Frequency Response
Function (FRF) de®ned as the ratio of the magnitude of the FFT for arch acceleration to the
magnitude of the FFT for the hammer acceleration; and (2) the radial displacement mode shapes for the
arch at the peaks of the FRF. The FRF for each of the three arches that we tested is shown in Fig. 10.
The software gave a listing of the four lowest frequencies that corresponded to the ®rst four peaks of
each Frequency Response Function. These results, which we reproduced to within about 2% in repeated
tests, are the measured frequencies listed in Table 3.

Considering all of these data, the measured frequencies averaged about 11% less than those predicted
from theory. Especially, the measured frequencies for i � 1 averaged about 7% lower than the predicted
values. The di�erences between theory and experiment are of the same order as obtained on uniform
arches (Lee and Wilson, 1989) and may be accounted for, by several factors: the experimental di�culties
of achieving ``perfect'' hammer strikes exactly on the arch centerline, where imperfect hammer strikes
led to out-of-plane free vibrations; di�culties of achieving the ideal end constraint conditions (clamped
or hinged); and the presence of natural structural damping in the experiments which was not included in
the theoretical model.

From Table 3, it is found that the discrepancy between analytical and experimental values for C3 of
parabolic arch with hinged±hinged and hinged±clamped end constraints is relatively large. The main
reason of the large discrepancy may be accounted for the looseness of the end hinges.

Fig. 10. Frequency Response Function of acceleration for experimental arches. (a) Hinged±hinged; (b) hinged±clamped; (c)

clamped±clamped.
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The ®rst four mode shapes as computed from the experimental data for the hinged±hinged arch are
shown in Fig. 11. In reality, these measured shapes should be smooth; but the software that we used,
simply connected data from the 15 reference points with straight lines. However, we observe that the
general shapes agree with the computed results shown in Fig. 9(a). Not shown herein are the
experimental mode shape data for the hinged±clamped and the clamped±clamped con®gurations. We
observed that these measured results were in complete agreement with the corresponding computed
results shown in Fig. 9(b) and (c).

7. Concluding remarks

The methods presented here for calculating frequencies and mode shapes for non-circular arches with
non-uniform cross-section were found to be e�cient and reliable over a wide range of system
parameters. For three arch geometries (parabolic, catenary and elliptic), the e�ects of each of the three
parameters f, s and n on Ci were investigated. For the parabolic arches, the e�ects of the type of taper
on Ci were analyzed. Numerical results show that the arch geometry has little e�ect on the frequency
parameters Ci, other parameters remaining the same. The frequency parameters Ci generally increase, as
the type of taper changes from the breadth- to the square- to the depth-taper. Experiments in which
four frequencies were measured on breadth-tapered quadratic arches with hinged±hinged, hinged±
clamped and clamped±clamped ends, served to validate the results of the theoretical analysis.
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Fig. 11. Measured mode shapes of the hinged±hinged experimental arch. (a) Mode 1, 297 Hz; (b) mode 2, 684 Hz; (c) mode 3,

1100 Hz; (d) mode 4, 2049 Hz. ± ± ± ± ± Undeformed arch.

S.J. Oh et al. / International Journal of Solids and Structures 37 (2000) 4871±48914890



References

Borg, S.F., Gennaro, J.J., 1959. Advanced Structural Analysis. Van Nostrand, Princeton, NJ.

Den Hartog, J.P., 1928. The lowest natural frequency of circular arcs. Philosophical Magazine 5, 400±408.

Ewins, D.J., 1985. Modal Testing: Theory and Practice. Wiley, New York.

Gupta, A.K., 1985. Vibration of tapered beams. Journal of Structural Engineering (ASCE) 111, 19±36.

Gupta, A.K., Howson, W.P., 1994. Exact natural frequencies of plane structures composed of slender elastic curved members.

Journal of Sound and Vibration 175, 145±157.

Gutierrez, R.H., Laura, P.A.A., Rossi, R.E., Bertero, R., Villaggi, A., 1989. In-plane vibrations of non-circular arcs of non-

uniform cross-section. Journal of Sound and Vibration 129, 181±200.

Henrych, J., 1981. The Dynamics of Arches and Frames. Elsevier, Amsterdam.

Irie, T., Yamada, G., Tanaka, K., 1983. Natural frequencies of in-plane vibration of arcs. Journal of Applied Mechanics (ASME)

50, 449±452.

Kang, K., Bert, C.W., Striz, A.G., 1995. Vibration analysis of shear deformable circular arches by the di�erential quadrature

method. Journal of Sound and Vibration 181, 353±360.

Kawakami, M., Sakiyama, T., Matsuda, H., Morita, C., 1995. In-plane and out-of-plane free vibrations of curved beams with

variable cross sections. Journal of Sound and Vibration 187, 381±401.

Laura, P.A.A., Verniere de Irassar, P.L., Carnicer, R., Bertero, R., 1988. A note on vibrations of a circumferential arch with

thickness varying in a discontinuous fashion. Journal of Sound and Vibration 120, 95±105.

Lee, B.K., Wilson, J.F., 1989. Free vibrations of arches with variable curvature. Journal of Sound and Vibration 136, 75±89.

Leontovich, V., 1969. Frames and Arches. McGraw-Hill, New York.

Maurizi, M.J., Belles, P.M., Rossi, R.E., De Rosa, M.A., 1993. Free vibration of a three-centered arc clamped at the ends. Journal

of Sound and Vibration 161, 187±189.

Romanelli, E., Laura, P.A.A., 1972. Fundamental frequencies of non-circular, elastic, hinged arcs. Journal of Sound and Vibration

24, 17±22.

Veletsos, A.S., Austin, W.J., Pereira, C.A.L., Wung, S.J., 1972. Free in-plane vibration of circular arches. Journal of the

Engineering Mechanics Division (ASCE) 98, 311±329.

Volterra, E., Morell, J.D., 1960. A note on the lowest natural frequency of elastic arcs. Journal of Applied Mechanics (ASME) 27,

744±746.

Wang, T.M., 1972. Lowest natural frequency of clamped parabolic arc. Journal of the Structural Division (ASCE) 98, 407±411.

Wang, T.M., Moore, J.A., 1973. Lowest natural extensional frequency of clamped elliptic arcs. Journal of Sound and Vibration 30,

1±7.

Wang, T.M., 1975. E�ect of variable curvature on fundamental frequency of clamped parabolic arcs. Journal of Sound and

Vibration 41, 247±251.

Wilson, J.F., Lee, B.K., 1995. In-plane free vibrations of catenary arches with unsymmetric axes. Structural Engineering and

Mechanics 3, 511±525.

Yildirim, V., 1997. A computer program for the free vibration analysis of elastic arcs. Computers and Structures 62, 475±485.

S.J. Oh et al. / International Journal of Solids and Structures 37 (2000) 4871±4891 4891


